

SPIC 2019 : Troisième congrès national Sciences et Technologies des systèmes pi-conjugués 7-11 oct. 2019, Arras 62000 (France)

Synthesis, characterization, photovoltaic performances and stability analysis of new NFA molecules with an extended piconjugated core

<u>Lydia Cabau</u>^{1*}, Yann Kervella¹, Olivier Bardagot¹, Yatzil Avalos², Agnès Rivaton³, Carmen M. Ruiz⁴, David Duché⁴, Jean-Jacques Simon⁴, Pavlo Perkhun², Olivier Margeat², Christine Videlot-Ackermann², Mélanie Bertrand⁵, Jörg Ackermann² Renaud Demadrille¹

¹Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble
²Aix-Marseille University, CINaM, UMR CNRS 7325, Marseille, France.
³Université Clermont Auvergne, UMR CNRS 6296, SIGMA Clermont, ICCF, Clermont–Ferrand, France
⁴Aix-Marseille Univ., Univ. Toulon, UMR CNRS 7334, IM2NP, Marseille, France
⁵ARMOR, Organic Photovoltaics Division, Armor Sustainable Energies (ASE), La Chevrolière, France

Lydia.cabau@cea.fr*

In the past few decades Organic Solar Cells (OSC) have emerged as one of the promising third generation photovoltaic technology on account of their advantages like light-weight, flexibility, transparency and potential low cost¹. Until 2012, the scientific community has made considerable efforts on the development of new donor materials combined with fullerenes. Despite the development of hundreds of new p-type materials, the efficiency of OSC have not become potentially competitive until the rise of non-fullerenes acceptors, which have overcome some of the technical drawbacks associated to the fullerenes. Using them, the photovoltaic performance have been increased up to 16%² in single junction and over 17%³ in tandem solar cells. Although, it must be remembered not only a high efficiency is required but high stability to make OSC technology viable for commercialization. Thus, more in-depth study are needed to further understand degradation mechanisms.

In that context, we present the synthesis, the characterization and the use in OSCs of three new NFAs with extended π -conjugated segments between the acceptor moieties. Some of them contain fluorine atoms in the acceptor units, which has been proved to play a role on the photovoltaic performance⁴. These NFAs have been combined with the PCE12 donor polymer obtaining, as preliminary results, power conversion efficiency comprise 5-6% with an outstanding V_{oc} over 1,1V, significantly higher compared with ITIC-based devices used as a reference in this work. The NFAs have been exposed under thermal and photochemical stress. Noticeably, one of the, exhibited improved stability compared with ITIC.

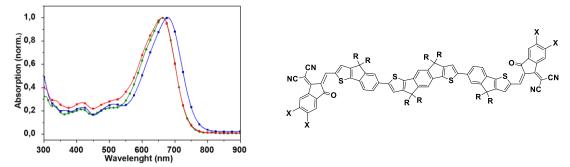


Figure 1: Normalized absorption spectra of the new NFAs (left) and structure of the new NFAs (right)

[1]: Inganäs, O. Adv. Mater. 30, 1800388, (2018).

- [2]: Y. Cui et al., Nat. Commun. 10, 2515, (2019).
- [3]: L. Meng et al., Science, vol. 361, 1094, (2018).

[4]: T. J. Aldrich et al., J. Am. Chem. Soc, vol. 141, 3274, 2019.